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Zealand 

(Reechoed 26 Februao~ 1996 and in f i na lJbrm 28 March 1997) 

1. INTRODUCTION 

The present study is of  relevance to the performance of 
packed bed reactors [1], but the author 's  primary motivation 
is to investigate a scientific situation which has not  been 
studied previously. Motivated by the belief that it serves as 
a paradigm for convection induced by an inclined applied 
temperature gradient in general situations, the author  [2, 3] 
has studied the case of such convection in a shallow layer of  
a saturated porous medium. The horizontal component  of  
the applied gradient induces a Hadley circulation which, in 
the central portion of the flow, is approximately independent 
of  horizontal position and can be treated as a uniform flow. 
This flow becomes unstable when the vertical component  of  
the applied gradient is sufficiently great. 

The present paper is an extension, to the case where vertical 
throughflow is present, of  refs [2] and [3]. It is also an exten- 
sion, to the case of inclined rather than vertical gradients, of  
the studies of  effect of  throughflow, on the onset of  con- 
vection in a porous medium layer, by Jones and Persichetti 
[1] and Nield [4]. As far as the author  is aware, these are the 
only published papers on the onset of  convection with ver- 
tical throughflow in a porous medium. Other aspects of  con- 
vection induced by inclined gradients in a porous medium 
have been reviewed by Lage and Nield [5]. 

2. BASIC EQUATIONS AND STEADY-STATE 
SOLUTION 

Cartesian axes are chosen with the z*-axis vertically 
upwards and the x*-axis in the direction of the applied hori- 
zontal temperature gradient ft. The superscript asterisks 
denote dimensional variables. The porous medium occupies 
a layer of  height H. The vertical temperature difference across 
the boundaries is AT (see Fig. 1). It is assumed that the 
Oberbeck-Boussinesq approximation is valid, and that flow 
in the porous medium is governed by Darcy's  law, Accord- 
ingly, the governing equations are 

T" * T~ - aTr~ px* 
z ~ = HIZ ~ Top surface # 

~ ' -  Bottom surf~e med~m 
T ' - T  O + AT/2-~X* 

Fig. I. Definition sketch for the problem. 

V*'v* =0 (1) 
0 = V * P * - - ( l ~ / K ) v * + p * g  (2) 

(pC)m(i~T*/~:t*)+(pCp)fV*'V*T* = kmV*2T * (3) 

p*=  p0[1 --7T(T* - To)]. (4) 

Here (u *, v *, w *) = v *, P* and T* are the seepage (Darcy) 
velocity, pressure and temperature, respectively. The sub- 
scripts m and f refer to the porous medium and the fluid, 
respectively. Also, #, p and c denote viscosity, density and 
specific heat, while K is the permeability of  the medium, km 
is the effective thermal conductivity, and 7T is the thermal 
expansion coefficient. 

The throughflow velocity is denoted by Wv, so the bound- 
ary conditions are 

W * ~ W v 

T * -  T o - ( + _ A T ) / 2 - - [ ~ x *  a t z * =  +_H/2. (5) 

We define non-dimensional quantities by 

x = x * / H  t = % t * / A H  2 ( u , r , w ) - v -  Hv*/~m 

P = K(P*+po,qz*)/l~Tm T = R , ( T *  To ) /AT  

where am = km/(pcp)f and A = (pCm)/(pcp) f. The non-dimen- 
sional parameters which arise are the throughflow P6clet 
number  

Q~ = w v H / %  (6) 

the vertical Rayleigh number  

Rv = p o g y K H A T / # %  (7) 

and the horizontal Rayleigh number  

Rh = pogT K H  2 fl/,ttOCm • (8) 

The governing equations now take the form 

V" v = 0 (9) 

0 = - V P - v +  T k  (10) 

¢?T/~t + v" V T  - V 2 T. (11) 

The boundary conditions are now 

w = Q v  T =  - ( + R 0 / 2  Rhx a t z =  +1/2.  (12) 

Equations (9)-(12) have a steady-state solution of the 
form 
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T , = 7 ? ( z ) - R h x  u~=U(z )  v ~ = 0  w ~ - Q ~  (13) 

P~ = P(x ,y , z ) .  

This is a solution provided that 

DU = Rh (14) 

D27~--QvDTF= RhU. (15) 

Here D denotes the derivative operator d/dz. It is assumed 
that there is no net horizontal flow so ( U )  = 0. Here the 
angle brackets denote an  average with respect to the vertical 
coordinate, which is equivalent to an integral with respect to 
z from - 1/2 to 1/2. 

The steady-state solution is thus 

U~ = Rhz (16) 

L=~- -g+Q/_ 
Qve Rh + Rh 2 

[exp(Q~z) -cosh(Qv/2)] .  (17) 
2Q~ sinh (Q~/2) 

3. STABILITY ANALYSIS 

We now perturb the steady-state solution. We write 
v = v ~ + v ' ,  T =  T~+O', P = P ~ + p ' .  The linearized per- 
turbation equations are 

V ' v '  = 0 (18) 

V p ' + v ' - O ' k  = 0 (19) 

80"/8t+ USO'/Sx + Q~ ~O'/Oz - Rhu' + (DT)w" = V20 '. 

(2o)  

We make the normal mode expansion 

[u', v', w', O',p'] = [u(z) ,  v(z), w(z), O(z),p(z)] 

x e x p { i ( k x + l y - a t ) } .  (21) 

We substitute this into the perturbation equations and elim- 
inate p, u, and v from the resulting equations to obtain 

(D 2 - -~2)W÷~20 = 0 (22) 

(D 2 -:~2 + i a - i k U ) O + i ~ - 2 k R h D u  

- ( D T ) w - Q v D O  = 0 (23) 

where c~ = (k2+12) 1:2 is the overall horizontal wavenumber.  
We refer to a disturbance with k = 0 as a longitudinal mode 
and one with 1 = 0 as a transverse mode. 

The last two equations must  be solved subject to appro- 
priate boundary conditions. For the case of boundaries at 
which the perturbation velocity and temperature are zero, 
we have 

l 
w = O = O  a t z =  + . (24) 

- 2  

The problem is now reduced to that of  solving equations 
(22)-(24), where U is given by equation (16) and 

Q~ Rh + R~ 
DT~= R2z 2 2 (25) h /Q~+Rh/Q~ 2Q~sinh(Q,,/2) exp(Qvz) 

Without  loss of  generality we may regard R~ as the eigenvalue 
with Rh, Q~, o, k and l as parameters. At neutral stability a 
has to be real and chosen so that  R.. is real. Subject to this 
constraint, the critical value of  R~ is its minimum, as a, k and 
I are varied. 

To solve the differential equation system, a Galerkin 
approximation of order N, as in Ref. [2], was used. We select 
as trial functions (satisfying the boundary conditions) 

w21, , = 02~ i = c o s ( 2 p -  1)rcz 

Wzp = O~ r, = sin2prrz forp - 1,2 . . . . .  [ (N+l ) /2 ]  

where the square brackets denote 'integer part of'. 
The standard procedure [2, 3] leads to the eigenvalue equa- 

tion in the form 

det(A0) = 0 (26) 

where, for m, n = 1, 2 

A2., 12,, ~1 = (Dw~Dw.+ct2w. ,w.)  

A~., I.~.~,--~2(w.,O.,) 

72.,.2. 1= (DTO~w, , - i~  2kRhO.,Dw,~) 

A 2.,.2,, - (DO.,DO. + (c~ 2 

--i[a kU])O~O~ +Q~OmDOm>. 

The various integrals involved are easily evaluated. One 
finds, for example, that  

1 1 2 2 
(w~w.,) = ~6~,, (DWmDW,,) = ~rn x 6~. 

where 6m., is the Kronecker delta 

2mnVmn 4tnnVm, 
(zO~O,,) 

n ~ m'- r~(m ~ n~) ~ 
(O,.DO,,) ~ - -  

where 

Vmn 

( e ~: 0., w., ) = 

where 

dO= 

i i f m + n i s e v e n  

= if(m + n + 1 )/2 is even 

if(m + n + 1 )/2 is odd 

• sinh (2/2) 

[ m + l ]  [ n + l ]  
i fm + n  is even and [ ~ ] +  [ T ]  is even 

- do sinh(2/2) 

. V m + 1 3  V n + t q  dd 
afro + n is even anti L T J  + L ~ J i s  o 

dO cosh(2/2) 

if + isod  ndI l+F lis  en 
- dO cosh(2/2) 

ifm + n  is odd and [ ~ ]  + [ ~ ]  is odd 

4mn~22 

[).: + (m+n)2r~2][Z 2 + (m--n)Z~ z] 

4. ANALYTIC AND NUMERICAL SOLUTIONS 
AND DISCUSSION 

At the second-order (N = 2) approximation it is feasible 
to expand the eigenvalue equation (26) algebraically. Taking 
the imaginary part of  the equation yields a = 0, and the real 
part yields 
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2 2 

Rv- (l+ Qv )+ (27) 
o:2 \ 4nz/  4n 2 

Thus  the critical (i.e. min imum as ~ is varied) wavenumber 
is ~o = n and the critical vertical Rayleigh number  is 

Rye = 4n: +Q~ +R2/4n 2. (28) 

For the case Qv = 0, the result given in ref. [2] is recovered. 
Clearly the effect of  vertical throughflow is stabilizing for the 
situation we are considering. This agrees with the results 
reported in refs [1] and [4]. 

The formula (27) is known to be exact when Qv = 0, and 
so is expected to be a good approximation when Q~ is small, 
but non-zero. At order N =  12 a numerical method,  
described in ref. [3], was used to calculate the min imum value 
of R~. It was shown by Nield [2] that the favoured form of 
the disturbance for the case Qv = 0 is in the form of  non- 
oscillatory longitudinal rolls, and accordingly the results 
reported in this paper are for rr = 0 and k = 0. A check was 
made that, for the range of  parameters for which results are 
reported, the longitudinal mode is indeed the favoured one. 
Since the problem is not  self adjoint, the eigenvalue rr is not 
necessarily real. However, it appears that there is no physical 
mechanism present which can lead to oscillatory modes being 
favoured, at least for the case of  small Q~. 

The results for R~ are presented in Table 1. (Since the 
eigenvalue equation is singular for Qv = 0, extrapolation is 
needed to obtain results for that value of  Q~.) The range for 
Rh has been restricted so that the approximation at this 
order gives results accurate to within 0.1%. The values for 
~ presented in Table 2 are accurate to 1%. 

The values of  Rvc presented in Table 1 differ from those 
predicted from equation (28) by less than 10%. The results 
for the case Q,. = 0 agree well with those reported in ref. [2] 
and the results for Rh = 0 are in line with those reported in 
ref. [1]. It is seen that increments between adjacent rows of 
the table are uniform across a row, showing that the sta- 

Table 1. Values of  the critical vertical Rayleigh number  R, 
for various values of  Qv and RH 

RH = 0 10 20 30 40 

Qv = 0 39.48 42.01 49.56 62.01 79.02 
1 40.88 43.40 50.94 63.34 80.31 
2 45.08 47.60 55.13 67.49 84.38 
3 52.07 54.58 62.08 74.38 91.12 
4 61.67 64.16 71.61 83.78 100.3 
5 73.40 75.87 83.17 95.06 111.0 
6 86.59 88.97 95.98 107.3 122.0 
7 100.5 120.8 109.3 119.6 132.8 
8 114.7 116.8 122.7 131.9 143.7 

Table 2. Values of  the critical horizontal wavenumber ~c for 
various values of  Qv and R ,  

RH = 0 10 20 30 40 

Qv = 0 3.14 3.14 3.15 3.16 3.20 
1 3.18 3.18 3.18 3.20 3.25 
2 3.29 3.29 3.29 3.21 3.37 
3 3.49 3.49 3.50 3.52 3.58 
4 3.79 3.79 3.81 3.85 3.95 
5 4.20 4.21 4.25 4.35 4.58 
6 4.73 4.76 4.86 5.06 5.52 
7 5.38 5.43 5.58 5.89 6.45 
8 6.10 6.16 6.35 6.71 7.28 

bilizing effects of  the horizontal applied temperature gradient 
(represented by Rh) and the vertical throughflow (rep- 
resented by Qv) are approximately additive, for the par- 
ameter range for which the calculations have been made. We 
note that, for this case in which the upper and lower bound- 
ary conditions are identical, the effect of  throughflow is inde- 
pendent of  the sign of Qv. The stabilizing effect is a result of  
the throughflow giving rise to a temperature distribution in 
which the gradient is significant only in a sub-layer of  depth 
6, say, and the effective Rayleigh number  is that  based on 6 
rather than  H, the full layer depth. The bulk of the convection 
is confined to the sublayer. The applied temperature differ- 
ence needed to induce convection is accordingly increased, 
as a result of  the throughflow, by a factor of  the order of  
HI6. This means that the critical value of  Rv is increased by 
that factor. 

The results presented in Table 2 indicate that the critical 
wavenumber increases with both Rh and Qv for the parameter  
range investigated. At present there are no experimental 
results available for comparison. When they are available it 
may be desirable to extend the parameter range for calcu- 
lations. 
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